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1. (a) State and prove Archimedean property of real

numbers.

(b) Let A and B be two nonempty bounded sets of

positive real numbers, and let
C={xy: x € A and y € B}.
Show that C is bounded and :
(1) Sup C=Sup A Sup B

(i) Inf C=1Inf A Inf B

(c) Let f be a function on R defined by

£ (x) _ { I, when x is rational
-1, when x is irrational

Show S )
that f i discontinuous at every point of
R.
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(d) Define Uniform continuity of a ful

e function f defined by

interval I. Show that th

. . the interval
f(x) = \/x 1is uniformly continuous in t

[1,3].

2. (a) Show that the sequence <r*> CONVEIEES to zero if

|| < 1. Discuss other cases also.

(b) Show that lim ¥n=1.

n—oo

(c) Define the limit of a sequence of real number.

Let <a_> be a sequence of positive terms such
that <a > — a. Then prove that /an s +/a.

(d) If f and g be two real functiong defined on some

neighbourhood of ¢ Such that Lim f(x) = 1,

x—C
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lim g(x)=m, then show that

X—>C

)1{1_)mc (fg)x=)1(i_)mc f(x) lim g(x):lm.

X—cC

(a) Let <a,> be a sequence of reg] numbers such that
a,#0 for all n and

. [ a,y
nh_r)rgo( :+ le’ where |L|< 1.

n

Show that lima; =0 Also,

e Deduce that

lim 27"n% =0 '
n—oo

(b) Define Cauchy sequence. Use Cauchy’s General

Principle of Convergence to show that the
sequence <an> defined by
1 1 1

ap =l+—4_4... ¢
" 3 5 2n-1

does not Converge,
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dcfiﬂed by the

(c) Prove that the sequence <S5,”

: =1, n=2
recursion formula: S ., = \/3’57’ S| ’
o

converges to 3.

d subset S # ¢ of R

(d) Give an example of a bounde
und

whose least upper bound and greatest lower bo

belong to S°.

4. (a) State Cauchy’s ot root test for the series. Use

this test to check the convergence of the series

(b) State and prove the necessary condition for the

convergence of a series. Is the converse holds

true? Justify your answer,

P.T.O.
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(c) Test the convergence of the following series
c

n

1 . ..
(i) z 0:1——‘ where r is any positive number.
- n.

(d) State the D’ Alembert ratio test and Raabe’s test
for the convergence of the series. Test the

convergence of the series

P

n=1

(a) Define continuity of a real valued function at a

point.
2
X" -9
Show that the function defined as { x -3’ x#3
6a X= 3

is continuoyg 4 x=3
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(b) Show that every absolutely convergent series 1S

convergent. s the copverse holds true? Give

example.

(c) Show that the function f defined on [a, b] as

0 when x is rational
f(x)= =
1  when x is irrational

1s not Riemann integrable.

(d) Show that the series 1+r+r2+r>+--- (r>0)

converges if r<1 and diverges if r> 1.

6. (a) Define Riemann integrability of a bounded function

| f on a bounded closed interval [a,b],

(b) Use the definition of Riemann integrability to prove

b 3
J' x> dx:b\
0 3

P.T.O.
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(c) State Non-uniform Continuity Criteria of a function

: | 1
defined on- A € R. Use it to prove f(x):= — is
X

not uniform continuous on A = {x € R|x > 0}.

T
{

(diDefine supremum and infimum of the set S < R.

Find the supremum and infimum of the set

S={1-(-1)n:n € N)



